Vibration Suppression Control for an Articulated Robot: Effects of Model-Based Control Applied to a Waist Axis

نویسندگان

  • Masahiko Itoh
  • Hiroshi Yoshikawa
چکیده

This paper deals with a control technique of eliminating the transient vibration of a waist axis of an articulated robot. This technique is based on a model-based control in order to establish the damping effect on the mechanical part. The control model is related to the velocity control loop, and it is composed of reduced-order electrical and mechanical parts. Using this model, the velocity of the load is estimated, which is converted to the motor shaft. The difference between the estimated load speed and the motor speed is calculated dynamically, and it is added to the velocity command to suppress the transient vibration of a waist axis of the robot arm. The function of this technique is to increase the cut-off frequency of the system and the damping ratio at the driven machine part. This control model is easily obtained from design or experimental data and its algorithm can be easily installed in a DSP. This control technique is applied to a waist axis of an articulated robot composed of a harmonic drive gear reducer and a robot arm with 5 degrees of freedom. Simulations and experiments show satisfactory control results to reduce the transient vibration at the end-effector.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CONTROL OF FLEXIBLE JOINT ROBOT MANIPULATORS BY COMPENSATING FLEXIBILITY

A flexible-joint robot manipulator is a complex system because it is nonlinear, multivariable, highly coupled along with joint flexibility and uncertainty. To overcome flexibility, several methods have been proposed based on flexible model. This paper presents a novel method for controlling flexible-joint robot manipulators. A novel control law is presented by compensating flexibility to form a...

متن کامل

Adaptive RBF network control for robot manipulators

TThe uncertainty estimation and compensation are challenging problems for the robust control of robot manipulators which are complex systems. This paper presents a novel decentralized model-free robust controller for electrically driven robot manipulators. As a novelty, the proposed controller employs a simple Gaussian Radial-Basis-Function Network as an uncertainty estimator. The proposed netw...

متن کامل

Three-dimensional Vibration Suppression of an Euler-bernolli Beam via Boundary Control Method

In this paper, the general governing equations of three-dimensional vibrations of an Euler-Bernoulli Beam under influences of system dynamics are derived by the Hamiltonian method. Then two fundamental cases of a cantilever beam and a rotating beam are considered. The conventional methods for vibration suppression debit to expenses and make new problems such as control spillover because they ar...

متن کامل

Vibration suppression analysis for laminated composite beams embedded actuating magnetostrictive layers

This paper presents the analysis of vibration control of a laminated composite beam that including magnetostrictive layers. The formulation of problem is presented based on the shear deformation beam theory. For vibration suppression, the velocity feedback control with constant gain distributed is considered. Navier's method is applied to analyze the solution of vibration suppression of laminat...

متن کامل

Vibration Suppression of Fuel Sloshing using Subband Adaptive Filtering (RESEARCH NOTE)

One of the main vibration problems of aerospace vehicles with liquid fuel propulsion system is fuel sloshing. This phenomenon is a low frequency vibrational challenge which can affect the motion of the vehicle and degrade the stability of the main control system. In this regards, the motion of the liquid will be very critical when the frequency of the sloshing is very close to the frequencies o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003